C=150-50x+x^2

Simple and best practice solution for C=150-50x+x^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for C=150-50x+x^2 equation:



=150-50C+C^2
We move all terms to the left:
-(150-50C+C^2)=0
We get rid of parentheses
-C^2+50C-150=0
We add all the numbers together, and all the variables
-1C^2+50C-150=0
a = -1; b = 50; c = -150;
Δ = b2-4ac
Δ = 502-4·(-1)·(-150)
Δ = 1900
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$C_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$C_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1900}=\sqrt{100*19}=\sqrt{100}*\sqrt{19}=10\sqrt{19}$
$C_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(50)-10\sqrt{19}}{2*-1}=\frac{-50-10\sqrt{19}}{-2} $
$C_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(50)+10\sqrt{19}}{2*-1}=\frac{-50+10\sqrt{19}}{-2} $

See similar equations:

| -7x+10=7x-46 | | 3x-2=-4x-64 | | (4x+1)+(10x+1)=180 | | (10x-21)+(10x+1)=180 | | (5x-14)=(4x+4) | | 10/10/100=x | | 6r=16 | | -3x-2=4x12 | | (7x-17)+(7x+1)=180 | | 20x2-10x=5-10x | | (2x-4)=(3x-12) | | (2x-4)+(3x-12)=180 | | 3d+4=6d-2 | | n2+4n-10=0 | | x=75+130 | | (10x+8)+(7x+2)=180 | | (9x-21)+(8x-3)=180 | | 6a-41.5=0 | | 5x-3+4x-1=180 | | (6x+6)+(5x-24)=180 | | k^2+9-16k=0 | | 6.4g+5=4.4g+11 | | (4x-3)=(3x+22) | | 5(x-8)-6=-6(-5x+7)-9x | | (6x-9)+(2x-19)=180 | | 2(v+1)=7v-28 | | 8u+35=3(u-5) | | 20801+18.5x=43936+9.75x | | y+4.6=9.86 | | w-4.15=5.2 | | y-3.7=6.9 | | 5v-6+2(2v-6)=-3(v+4) |

Equations solver categories